Complex Functions

- Write the following functions $f(z)$ like $f(x+i y)=u(x, y)+i v(x, y)$:
- $f(z)=2 z^{2}-3 z+1$.
- $f(z)=e^{z}$.
- $f(z)=z e^{z^{2}}$.
- Write the following function $f(x+i y)=u(x, y)+i v(x, y)$ like $f(z)$.
- $f(x i+y)=4 x^{2}+i 4 y^{2}$.
- $f(x+i y)=x+y+i\left(x^{3} y-y^{2}\right)$.
- Find the following limits:
- $\lim _{z \rightarrow i} \frac{z^{4}-1}{z-i}$.
- $\lim _{z \rightarrow 1+i} \frac{z-1-i}{z^{2}-2 z+2}$.
- Show that the following complex functions are analytic.
- $f(z)=z^{3}$.
- $f(z)=e^{z}$.
- $f(z)=e^{2 x y}\left[\cos \left(y^{2}-x^{2}\right)+i \sin \left(y^{2}-x^{2}\right)\right]$.
- $f(z)=\frac{y+i x}{x^{2}+y^{2}}, \forall(x, y) \neq(0,0)$.
- Show that the following functions $u(x, y)$ are harmonic and find v such that $f=u+i v$ is analytic:
- $u(x, y)=x y^{3}-x^{3} y$.
- $u(x, y)=y^{3}-3 x^{2} y$.
- $u(x, y)=\sin (y) \sinh (x)$.
- Calculate the following complex integrals:
- $\int_{C}(2-i+\bar{z}) d z$ where C is the line that connects $z_{0}=0$ and $z_{1}=1-i$.
- $\int_{C} z^{2} d x$ if C is the circumference of radius 1 and center $(0,0)$.

